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1. This problem is most easily solved by noting that the circuit described can be understood as a pair of voltage
dividers connected in parallel to the EMF. A voltage divider is just a simple circuit in which a pair of circuit
elements (i.e. either inductors, capacitors, or resistors) are connected in series from a power supply to ground,
with a lead attached between them where a voltage is measured. If we complexify the voltages and currents,
and take the impedences (these are complex generalizations of resistances defined below, just think of them as
resistors for now) of the two elements to be Z1 and Z2, then the voltage measured by an ideal voltmeter which
draws no current is just the real part of,

Eout =
Z2

Z1 + Z2
Ein. (1)

In our case, we just have a pair of voltage dividers where the role of Z1 and Z2 are interchanged between the
two. Thus, the voltage difference between the two cases will just be the real part of,

Eout =
Z2 − Z1

Z1 + Z2
Ein. (2)

Now all that remains is to explain what the impedences of a capacitor and an inductor are. This is easy to
compute - the voltage drop across a resistor, inductor, and capacitor are given by IR, LdI

dt , and Q/C. If the
current is sinusoidal, then the easiest way to analyze the system is to complexify everything resulting in complex
currents and then take the real part at the end of the day. That is, take the current to be I(t) = �I0eiωt. Then,
one finds that the complexified voltage drops across all the above circuit elements simplify to expressions that
are complex generalizations of resistances, I(t)R, I(t)(iLω), and I(t) 1

iωC . Thus, we see that the impedence of
a capacitor and inductor are given by,

ZC =
1

iωC
ZL = iωL. (3)

To see that this makes sense, note that if ω = 0, we expect that no current should flow across a capacitor while
current should flow without any resistance through an inductor, which is indeed the case. Plugging these into
the above expression, we find,

Eout = �
( 1

iωC − iLω
1

iωC + iLω

)
=

(
1 + ω2LC

1− ω2LC

)
Ein. (4)

2. (a) To 0th order, this varying current means that we have a varying charge on the plates of the capacitor
given by Q(t) = I0

ω sinωt. This leads to a uniform electric field in the gap given by Gauss’s Law to be,
Ez(t) =

Q(t)
ε0πb2 = I0

ε0ωπb2 sinωt.

(b) The varying electric field induces a varying magnetic field,∮
�B · d�l = 2πsBφ(s, t) = µ0ε0

∂

∂t

∫
�E · d�a = µ0I0s

2

ωb2
cosωt ⇒ Bφ(s, t) =

µ0I0s

2πωb2
cosωt. (5)

(c) To first appproximation, this varying magnetic field will induce an additional variation of the z component
of the electric field in the cavity. To see this, consider a loop formed by a line segment between the two
plates that then just proceeds radially outward along both plates and reconnects in a line segment outside
the capacitor. As we have neglected fringing fields and as the electric field in the conducting plates
vanishes, an integral over this loop just reduces to an integral over the line segment inside the capacitor.
Further, the surface bounded by this loop proceeds radially outward from the line segment, that is, it is
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at constant angle φ and just spans a radial distance from s to b and height from 0 to d. Note that since
Faraday’s Law can only tell us about the curl of �E, it misses the 0th order contribution to �E, so we find,∮

�E1 · d�l = E1
z (s, t)d = −d ∂

∂t

∫ b

s

ds
µ0I0s

2πωb2
cosωt ⇒ E1

z (s, t) =
µ0I0(b2 − s2)

4πb2
sinωt. (6)

3. For simplicity, suppose the axis of rotation is the ẑ axis, and the electric field points in the x̂ direction. Then,
due to the rotation, the normal vector to the disk which is bounded by a loop of radius b going around the
length of the toroid is varying as,

n̂ = (cosωt, sinωt, 0). (7)

This results in a varying electric flux through the loop,

ΦE = πb2n̂ · �E0 = πb2E0n̂ · x̂ = πb2E0 cosωt (8)

Neglecting the width of the toroid, this varying flux gives rise to a nearly uniform, time-varying magnetic field
through the toroid,∫

�B · d�l = 2πbBφ(t) = µ0ε0
∂ΦE

∂t
= −µ0ε0ωπb

2E0 sinωt ⇒ Bφ(t) = −1
2
µ0ε0ωbE0 sinωt. (9)

The varying magnetic field results in a varying mangnetic flux through the turns of the toroid, giving rise to
an EMF,

E = −∂ΦB

∂t
=

1
2
µ0ε0nω

2πba2E0 cosωt. (10)

We can compute the current resulting from this emf using the inductance of the toroid. This can be easily
approximated using the fact that since b � a, the inductance of the toroid is essentially the same as a solenoid
of length 2πb with n/(2πb) turns per unit length, for which,

ΦB = n(µ0(n/(2πb)I)πa2 = (
1
2b
µ0n

2a2)I = LI ⇒ L =
1
2b
µ0n

2a2. (11)

Thus, we can compute the induced current by,

E =
1
2
µ0ε0nω

2πba2E0 cosωt = L
dI

dt
⇒ |Imax| = 1

2ωL
µ0nε0ω

2πba2E0 =
πb2ε0ωE0

n
. (12)

4. When written in terms of potentials, Gauss’s Law becomes, (Griffiths 10.4), in Coulomb Gauge,

∇2V +
∂

∂t
(∇ ·A) = − 1

ε0
ρ ⇒ ∇2V = − 1

ε0
ρ (13)

precisely Poisson’s equation. Thus, we see that the scalar potential of a point particle in this gauge is exactly
the Coulomb potential in electrostatics, hence the name. The equation for the vector potential in Coulomb
gauge is just Griffiths 10.5, (

∇2 �A− µ0ε0
∂2 �A

∂t2

)
= −

(
µ0ε0

∂(−∇V )
∂t

+ µ0
�J

)
. (14)

Since −∇V is the electric field if we were doing electrostatics, we can interpret this result as telling us that
such a varying “electric field” can be associated with an effective current.

5. Suppose that after a gauge transformation,

�A′ = �A+∇λ (15)

V ′ = V − ∂λ

∂t
, (16)
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we have V ′ = 0, and in this gauge, we have, �E = −∂ �A′
∂t . Thus, we see that �A′ =

∫
�Edt, up to a vector

field which is time independent. This ambiguity reflects the residual gauge freedom we have to make gauge
transformations which do not change V ′ = 0, i.e., gauge transformations which involve time independent λ(x),
∂λ
∂t = 0. This precisely adds to �A a time independent vector field ∇λ.

6. (a) Since we are just putting in a constant current, this corresponds to a linear build up of charge in times,
Q(t) = It, and as the charge is distributed uniformly, the resulting electric field is just,

�E =
σ

ε0
ẑ =

It

πa2ε0
ẑ. (17)

This varying electric field results in a varying magnetic field circulating in the gap via Ampere/Maxwell’s
law,

Bφ(s, t)2πs = µ0ε0
∂

∂t

(
It

πa2ε0
πs2

)
⇒ Bφ(s, t) =

µ0Is

2πa2
. (18)

(b) To compute the energy density, we just use,

uem =
1
2

(
ε0E

2 +
1
µ0

B2

)
=

µ0I
2

2π2a4

[
(ct)2 + (s/2)2

]
, (19)

while computing the Poynting vector just requires us to remember that ẑ × φ̂= −ŝ, so we find that it
points inwards,

�P =
1
µ0

( �E × �B) = − I2st

2π2ε0a4
ŝ. (20)

Now, we can check that this satisfies energy conservation, Griffiths 8.14,

∂uem

∂t
=

I2t

π2ε0a4
= −∇ · �P =

I2t

2π2ε0a4
∇ · (sŝ) = I2t

π2ε0a4
. (21)

(c) We can determine the total energy in the gap out to a radius b by just integrating,

Uem =
∫

uemdτ =
∫

uemw2πsds =
wµ0I

2

πa4

∫ b

0

[
(ct)2 + (s/2)2

]
sds =

wµ0I
2b2

2πa4

[
(ct)2 +

b2

8

]
. (22)

To get the power flowing into the gap, we just integrate over a surface at radius b and then compare to
the rate at which the energy is increasing to find,

Pin = −
∫

�P · d�a = I2wtb2

πε0a4
=

dUem

dt
=

wµ0I
2b2

2πa4
2c2t =

I2wtb2

πε0a4
. (23)

7. (a) Consider a light beam composed of n photons/m3. Since each photon has an energy E, the energy density
is just u = En. The energy flux is the energy density multiplied by the velocity of each photon, and is
therefore uc = Enc.

(b) Now, if each photon carries a momentum p, then the momentum density of the beam is just is the
momentum of each photon multiplied by the number density of photons, P = np. Since, for a photon,
m = 0, we have E = pc, so we have, P = nE/c. Now, as the magnitude of the Poynting vector is related
to the energy flux, using the result from part (a), P = nE/c = (Enc)/c2 = S/c2.

8. The idea here is that the due to the presence of an electric field associated with the charges as well as the
magnetic field due to the current through the solenoid, we obtain a non-zero Poynting vector which circulates
around the disk. Using the result of problem 7, this is to be interpreted as a non-zero momenum density
that circulates around the disk, before the current is turned off. Thus, this leads to a non-vanishing angular
momentum in the system, stored in the electromagnetic fields. It is this angular momentum that is transformed
into mechanical angular momentum as the current decays.
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